LEDCube

任一照明场景模拟器

用户手册

常州干明智能照明科技有限公司

地址:中国江苏省常州市新北区华山路 18号 3-410

邮编: 213022

电话: +86 (0519) 85289860 传真: +86 (0519) 85289870 邮箱: service@thouslite.com

网址: www.thouslite.com

常州干明智能照明科技有限公司 Thousand Lights Lighting (Changzhou) Limited

目录

1. 町介		
1.1	LEDCube 特性	
2. LEDCu	be 尺寸及安装	ε
2.1	LEDCube 尺寸	6
2.2	LEDCube 安装方式	ε
2.3	LEDCube 硬件接口及可选配件	10
	2.3.1 触屏控制器	10
	2.3.2 透射转换器	12
2.4	LEDCube 连接模式介绍	13
2.5	硬件准备工作	15
3. 设备	驱动及软件环境安装	17
3.1	LEDCube、无线发射器、触屏控制器驱动	17
3.2	测量设备及驱动安装	17
	3.2.1 X-Rite i1 Pro2	18
	3.2.2 THOUSLITE FS 光谱照度计	20
3.3	软件使用环境文件安装	20
4. LEDNA	AVIGATOR 软件使用介绍	21
4.1	不同连接模式下的软件开机自检	21
	4.1.1 PC 端通过触屏控制器连接 LEDCube	21
	4.1.2 PC 端通过无线发射器连接 LEDCube	22
	4.1.3 PC 端直接 LEDCube	22
4.2	菜单栏	23
	4.2.1 菜单/选项	23
	4.2.2 菜单/计算	24
	4.2.3 菜单/工具	25
	4.2.4 菜单/关于	26
4.3	图形显示区域	26
	单通道控制区域	
	测量区域及测量设置	
	数据库区域	
	配光区域	
4.8	光源区域	
	4.8.1 PC 端通过触屏控制器连接 LEDCube	
	4.8.2 PC 端通过无线发射器连接 LEDCube	
	4.8.3 PC 端直连 LEDCube	
	动态照明(硬件)模块	
) 动态照明(软件)模块	
4.11	L 自动配光模块	
	4.11.1 目标光参数设置	
	4.11.2 自动生成光源	
	4.11.3 生成光源的结果说明	4£

		4.11.4 保存结果光源	47
5.	LEDCu	ıbe 无线网络分组	48
	5.1	分组简介	48
	5.2	分组操作	48
		5.2.1 对 LEDCube 和无线发射器同时分组	49
		5.2.2 仅对无线发射器分组	50
		5.2.3 仅对 LEDCube 分组	51
6	配光刻	实例	53
	6.1	基于 Auto anchored 配光	53
	6.2	基于手动调节照度配光	56
	6.3	基于 SPD 的配光	58
7		更新	

Thousand Lights Lighting (Changzhou) Limited

1. 简介

THOUSLITE LEDCube 基于自主研发的核心算法,采用优选的十多种不同峰值波长的LED,实现出射光谱功率分布的可调,从而达到模拟任一照明场景的功能。LEDCube 目前是世界上最好的商业化光谱可调照明设备,其主要应用为照明机构、物体色视觉评价、相机及传感器的测试和校准,具体如日光模拟器、健康照明、医疗照明、中间视觉、光的非生物效应、物体显色性、白度评价、农业照明。LEDCube 的灵活的安装方式可以按照客户要求定制大空间光环境照明光源。

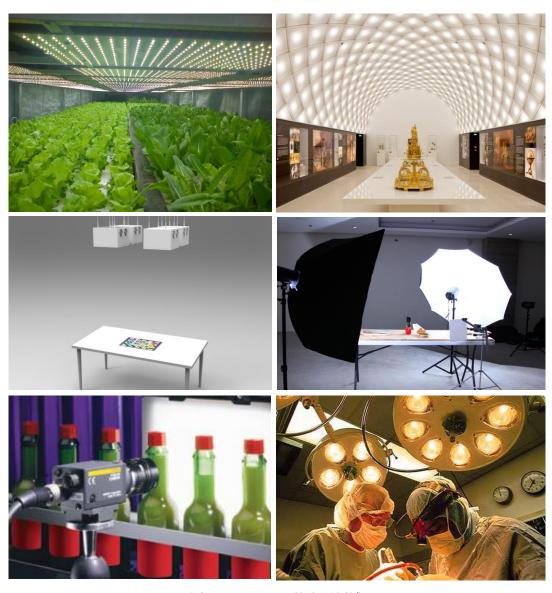


图 1.1. LEDCube 的应用领域

HOUSLITE常州干明智能照明科技有限公司

Thousand Lights Lighting (Changzhou) Limited

1.1 LEDCube 特性

1) 高品质日光模拟器

比市面上绝大多数专业灯箱复现更高品质(高显色指数 CRI 和低同色异谱指数 MI)的任意 色温日光

2) 黑体辐射轨迹模拟器

精确复现色温在 2000K 至 20000K 范围内的光源,且显色指数、Duv 用户可自定义

3) 模拟任一照明场景

复现任一测量或导入的光谱功率分布 SPD, 且方便不同工厂间的光传递

4) 光亮度可调

保证相同光品质的前提下光亮度可调

5) 光源间快速切换

不同光源间的切换无需等待时间,光品质始终如一

6 单通道控制

可任意调节 LEDCube 内每一通道发光强度以自由设计所需光源

7) 动态照明

可任意设置动态照明中的光源顺序和点亮时间

8) 精准快速的反馈系统

通过外接颜色传感器实现光源的自动反馈,补偿 LED 老化和多变的使用环境所造成的光品 质波动, 保证光源的稳定输出

9) 软件用户友好

提供简单、用户友好控制软件 LEDNavigator-LC, 且可进一步定制

10) 无频闪

提供一均匀的、无频闪的照明环境

11) 寿命长和极佳的长期稳定性

比传统荧光灯多达数倍的使用寿命,精心设计的散热系统保证了光源极佳的稳定性

12) 灵活多变的安装方式

提供多种安装方式满足不同应用,如观察木箱、吊装、定制支架等

13) LED 通道波长选择服务

提供从紫外、可见光及近红外 LED 通道波长选择服务

14) 无线控制

通过 Zigbee 技术,可同时或单独控制多达 256 个 LEDCube,方便建立大空间标准光环境

15) 36 小时快速响应

国内外用户工作日遇到并通知我们任何技术问题,我们会在36小时内快速响应并回复

目前, LEDCube 硬件分为三个版本,包括 11 个 LED 通道(一般照明研究应用),15 个通道 (物体色视觉评价应用)和14个通道(相机或传感器校准和测试应用)。三个版本主要区别 是内部的 LED 灯珠排布和种类稍有区别,而使用方法和软件控制等方面均为一致。

常州干明智能照明科技有限公司 Thousand Lights Lighting (Changzhou) Limited

	LEDCube-11	LEDCube-C15	LEDCube-I14	
LED 通道数	11通道	15通道	14通道	
光谱范围	400-700nm	350-700nm	400-730nm	
驱动方式	幅度调制驱动			
分辨率	每通道10位,1024级			
预热时间	附间 无			
LED寿命	>10000 小时			
存储容量	硬件可存储80个名字可编辑光源,软件可存储光源数量无限制			
预设光源	标准日光D65和D50 显色指数CIE Ra均达到99,同色异谱指数MIvis均达到A级(<0.25)			
可调范围	色温CCT: 2000~20000K; 显色指数CIE Ra: 0~100; Duv: -0.02~+0.02			
最大光通量及照度	以下数据为一颗LEDCube, 更高亮度可通过多个LEDCube实现 D65: 1700lm, 1米处: 850lux; D50: 2400lm, 1米处: 1250lux			
短期稳定性	D65<±10K, D50<±5K; 光亮度<±0.5% D65<±25K, D50<±15K; 光亮度<±1.5%			
长期稳定性				
软件仪器兼容性	X-Rite i1 Pro 2, Konica Minolta CL500A, THOUSLITE FS 光谱照度计 Jeti Specbos 1211UV 分光辐射度计			
电学参数	数 110/230V, 50/60Hz, 最大180W			
工作温度	温度 0-30°C			
控制方式	USB数据线,无线控制,触屏控制器			
尺寸(长/宽/高)及重量	† (长/宽/高)及重量 300×300×200 mm , 7 kg			
包装清单	LEDCube光源,电源线,USB数据线,无线发射器			
额外收费配件	挂装套件,测量仪器,50×50×60cm Munsell N7观察箱,定制支架,触屏控制器,透射转接器			
配套软件(选配)	LEDNavigator-LC包含六个模块:黑体辐射轨迹模拟,光谱功率分布匹配,自动反馈,动态照明,单通道控制,单颗LEDCube控制; SDK可提供			

Thousand Lights Lighting (Changzhou) Limited

2. LEDCube 尺寸及安装

2.1 LEDCube 尺寸

图 2.1 展示了 LEDCube 的产品尺寸,其自重约 7kg。

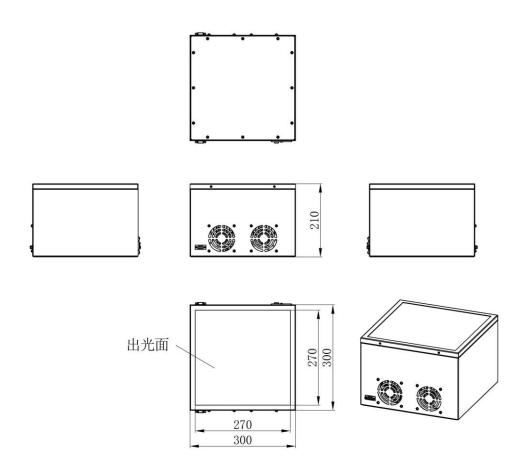
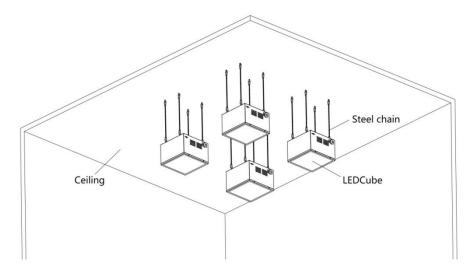


图 2.1. LEDCube 的三维尺寸(图中单位为毫米)

2.2 LEDCube 安装方式


LEDCube 的安装方式灵活多变,以下四种方式仅供参考:

● 简易吊装:如图 2.2,使用专用钢链将 LEDCube 吊装在天花板上,通过调节 LEDCube 背板上的挂钩固定位置,即可方便地调节 LEDCube 的俯仰角度。

常州干明智能照明科技有限公司 Thousand Lights Lighting (Changzhou) Limited

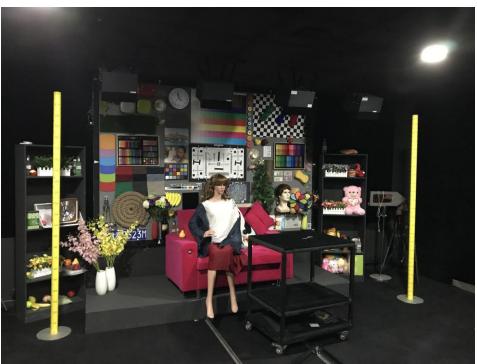


图 2.2. LEDCube 的简易吊装方式

适用于空间照明的定制铝型材支架:如图 2.3,使用定制的铝型材支架可简便且牢固地 固定多个 LEDCube, 并可通过吊装链子的长短调节 LEDCube 的照射角度。

常州干明智能照明科技有限公司 Thousand Lights Lighting (Changzhou) Limited

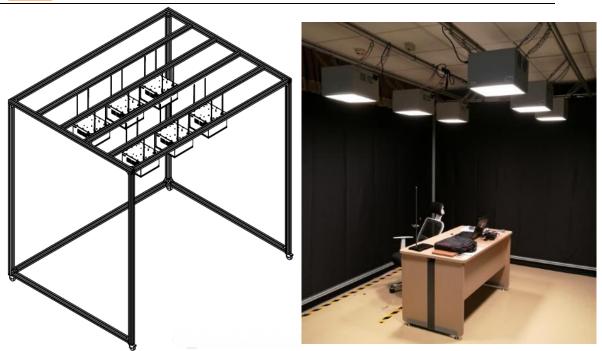


图 2.3. 适用于空间照明的铝型材支架安装

适用于 45/0 照明的定制铝型材支架: 如图 2.4, 该方案专门针对如测试卡/模特等应用场 景,可以保证大测试卡区域较高的照明均匀度(>90%)。

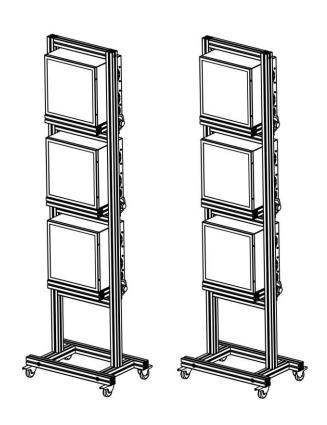


图 2.4. 适用于 45/0 照明方式的铝型材支架

Munsell N7 标准观察箱:如图 2.5,THOUSLITE 可提供该标准观察箱,十分方便搭建标 准化观察环境,尺寸为 50×50×60cm。另,也可定制其他尺寸、适用于不同 LEDCube 个 数的观察箱,如图 2.6。

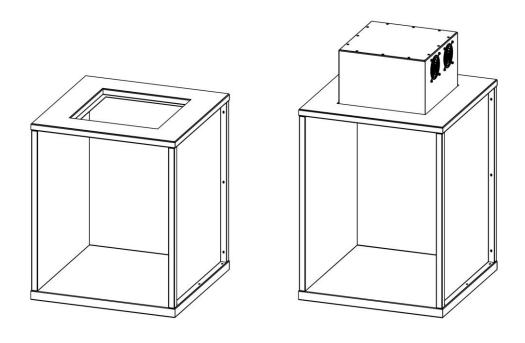


图 2.5. LEDCube 标准观察箱

Thousand Lights Lighting (Changzhou) Limited

图 2.6. LEDCube 定制观察箱

2.3 LEDCube 硬件接口及可选配件

LEDCube 硬件上有 2 个 DB9 通讯接口、1 个电源接口,以及一个电源开关,如图 2.7 所示。 其中 DB9 的公母头可以用于多个 LEDCube 硬件的串联。可选配件为触屏控制器和透射转换器。

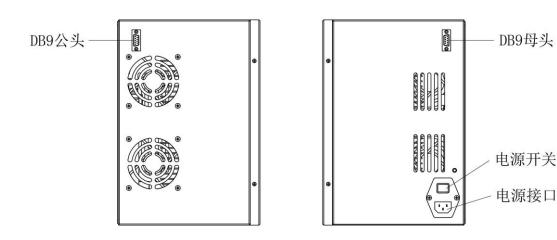


图 2.7. LEDCube 的侧示图

2.3.1 触屏控制器

当多个 LEDCube 串联时,第一个 LEDCube 的 DB9 母口可连接触屏控制器。见下图,触屏控制器上有两个接口: DB9 公口和 USB-B 口,其中 DB9 公口用于连接 LEDCube 硬件上的 DB9 母口,USB-B 口用于连接电脑端。

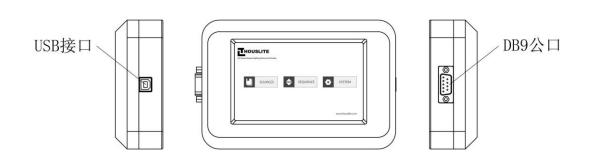
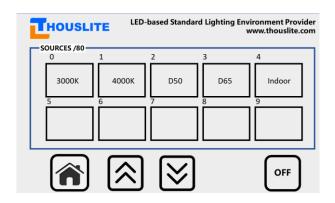


图 2.8. LEDCube 用触屏控制器

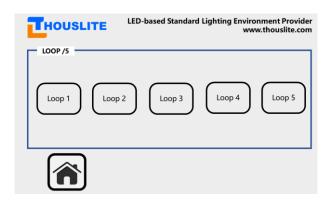
触屏控制器界面即功能介绍如下,

● 主界面:

包含 3 个功能按钮:光源(SOURCES),序列(SEQUENCE),系统(SYSTEM),点击相应按钮即可进入相应界面。



Thousand Lights Lighting (Changzhou) Limited


● 光源 (SOURCES) 界面:

用户可通过本界面切换点亮 LEDCube 硬件内存储的 80 个光源。例如:下图界面中,点击 0~4 号按钮任一,即可点亮相应光源。5~9 号按钮并未存储光源,点击后 LEDCube 将不进行任何操作。保存光源的方法请见 4.8.1 节。点击向下、向上按钮可切换整个页面。点击 OFF 按钮可关闭光源。

● 序列 (SEQUENCE) 界面:

该界面用于光源的动态循环设置。触屏控制器最多可保存5个光循环(Loop $1\sim$ Loop 5),见下图。

点击按钮即可进入相应光循环进行设置,每个光循环中,最多可存储 24 种光源,对应 Loop 列的 1~24 行。点击每一行的 Source 列,可输入希望点亮的光源序号。点击 Time/s 列,可设置每种光源点亮的时间。点击上下翻页按钮可切换光源序号。点击 START 可开始运行整个循环。循环开始后,点击 PAUSE 则循环暂定,点击 STOP 则选好停止。 Loop 可通过软件烧录,详见 4.9 小节。

Thousand Lights Lighting (Changzhou) Limited

● 系统 (SYSTEM) 界面:

该界面显示了当前的设备相关信息,包括设备名称、使用时间、校准日期等。

当连接 PC 与触屏控制器时(连接方法请见 2.4 节),如连接成功则会显示以下界面,**注意只有当手动切换至主界面时,触屏控制器才能够成功连接至 PC**。

2.3.2 透射转换器

透射转换器是 LEDCube 的另一个可选配件,见图 2.9。具体安装方式见图 2.10,取下固定 LEDCube 扩散板的四颗螺丝,取下外框和扩散板,再将转换器安装至 LEDCube 出光面,并用相同的四颗螺丝固定。

Thousand Lights Lighting (Changzhou) Limited

图 2.9. LEDCube 用透射转换器

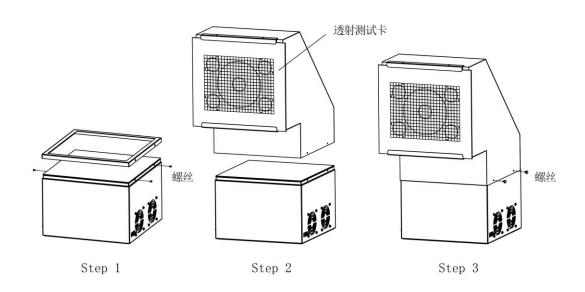
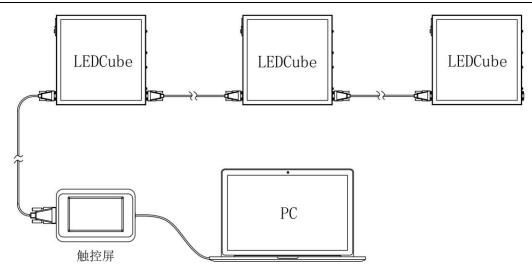


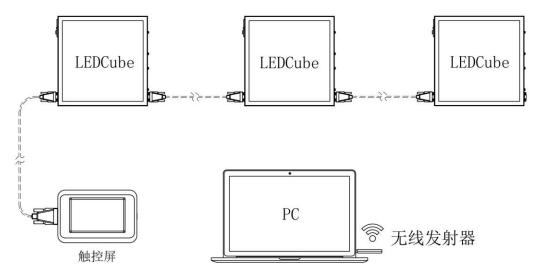
图 2.10. LEDCube 扩散板固定框

2.4 LEDCube 连接模式介绍

使用 DB9 接口的 LEDCube 硬件支持三种对 PC 端的连接模式,依次介绍如下。


● PC 端通过触屏控制器连接 LEDCube

该模式典型连接方式如下:


Thousand Lights Lighting (Changzhou) Limited

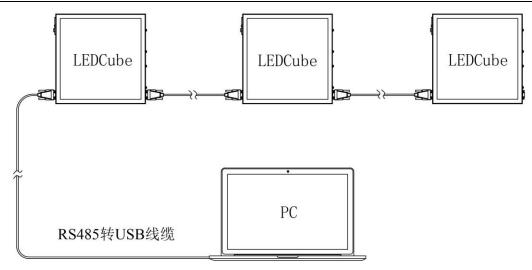
在该模式下,单台或多台 LEDCube 硬件依次通过 DB9 接口串联,最终连接到 LCD 触屏控制器(见 2.3 节)上,而后通过控制器上的 USB-B 接口连接 PC 端。该模式特点:连接稳定,触屏控制器可脱机(脱离 PC)单独工作。

● PC 端通过无线发射器连接 LEDCube

该模式典型连接方式如下:

该模式下,PC 端仅需连接无线发射器(见图 2.11)即可控制单台/多台 LEDCube。该模式下,各 LEDCube 硬件和触控屏之间可保持有线串联,也可不连接,上图中的连接虚线即表示此连接可选。

该模式特点:使用方便,PC端不必连接线缆,但有小概率个别LEDCube不能响应,即连接时会掉线。


● PC 端直连 LEDCube

该模式典型连接方式如下:

Thousand Lights Lighting (Changzhou) Limited

该模式下,各个 LEDCube 依次通过 DB9 接口串联,最终与 PC 通过专用的 RS485 转 USB 线缆进行连接,线缆如下图所示。

该模式特点:连接稳定,但需特殊线缆,且无法脱离 PC 使用。

当使用多台 LEDCube 时,建议客户使用第 1、2 种方式进行连接,第三种模式仅推荐单台 LEDCube 使用。

2.5 硬件准备工作

使用软件 LEDNavigator 之前的硬件准备工作如下:

LEDCube 端:

- ▶ 通过电源线缆连接电源,电源电压要求为230V/110V(取决于不同国家),频率50-60Hz;
- ▶ 参考不同的连接模式(见 2.4 节)连接 LEDCube、触屏控制器(可选)和 PC;
- ➤ 打开 LEDCube 电源

如需连接 PC 端进行控制,则 PC 端准备工作如下:

- ▶ 插入软件狗;
- ▶ 根据不同的连接模式连接 LEDCube/无线发射器/触屏控制器; 若 PC 端通过触屏控制器 连接 LEDCube,则触屏控制器务必切换至主页面,详见 2.3.1 节。
- ▶ 连接测量设备 (如需要);
- ▶ 安装必要的硬件驱动、软件运行环境(见第3章);

Thousand Lights Lighting (Changzhou) Limited

▶ 使用 LEDNavigator 软件进行操控(见第 4 章)

请注意最终与电脑相连的有三种硬件:测量设备、触屏控制器/LEDCube/无线发射器(取决 于 2.4 节中的 LEDCube 连接模式)、软件狗,如图 2.11 及 2.12 所示。

请注意如使用 USB Hub 集线器,则测量设备请勿连接在 Hub 上,建议将测量设备直接连接 在电脑主板上的 USB 接口,以确保其供电稳定。

图 2.11. LEDCube 的无线发射器 (左)、软件狗 (右)

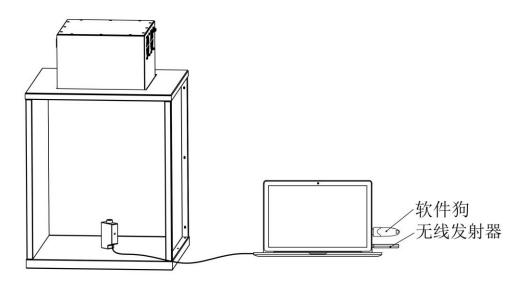


图 2.12. 典型设置-三个连接

Thousand Lights Lighting (Changzhou) Limited

3. 设备驱动及软件环境安装

3.1 LEDCube、无线发射器、触屏控制器驱动

LEDCube、无线发射器以及触屏控制器共用同一驱动。安装过程如下:

- ▶ 打开 LEDCube 电源,将 LEDCube 连接至电脑(或通过无线发射器、触屏控制器)
- ➤ 然后打开设备管理器,此时应当能够找到带警示的 Ports(COM & LPT)项,见图 3.1,此时需安装驱动。

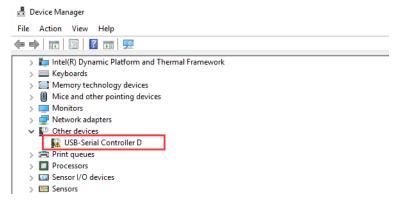


图 3.1. LEDCube 驱动安装提示

➤ 安装 *Prerequisites\Drivers* 文件夹下的驱动程序 USBDriverInstaller.exe, 此程序适用于 Windows Vista/7/Windows8/8.1/10。安装完成后,打开设备管理器,如 Ports(COM & LPT) 项下的项目黄色警示符消失,则说明安装成功,见图 3.2。

图 3.2. LEDCube 驱动安装完成

3.2 测量设备及驱动安装

目前 LEDNavigator 默认支持 3 款光谱测量设备,即 X-Rite i1 Pro2, THOUSLITE FS 和 Konica Minolta CL500A。除 Konica Minolta CL500A 外, THOUSLITE FS 和 X-Rite i1 Pro2 的驱动都需手动安装。 **各设备推荐的测量设置/几何条件请见 4.5 节。**

如需集成其他型号的光谱测量设备,请联系我们。

Thousand Lights Lighting (Changzhou) Limited

图 3.3.X-Rite i1 Pro2 (左), THOUSLITE FS (中), Konica Minolta CL500A (右)

3.2.1 X-Rite i1 Pro2

- 通过 USB 线连接 i1 Pro2 和电脑;
- 在电脑设备管理器中找到"eye-one",如图 3.4;
- 右击选择"属性", 然后选择"更新驱动", 如图 3.5;
- 选择"查找我的电脑以搜索驱动文件",见图 3.6;
- 定位到 Prerequisites/Drivers/i1 Pro2 driver 文件夹,按提示完成安装。

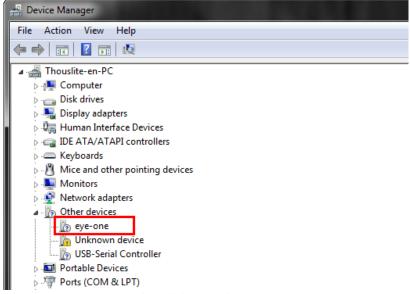


图 3.4. 在设备管理器中找到"eye one"

Thousand Lights Lighting (Changzhou) Limited

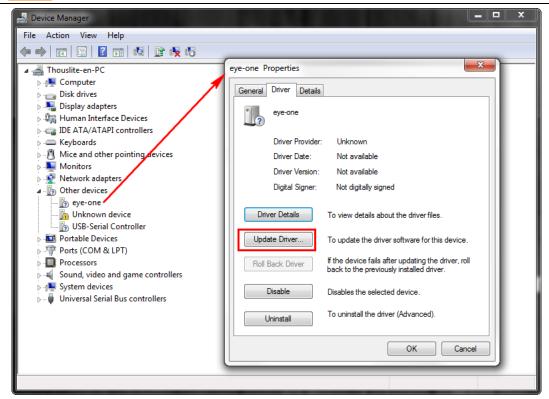


图 3.5. 更新驱动程序

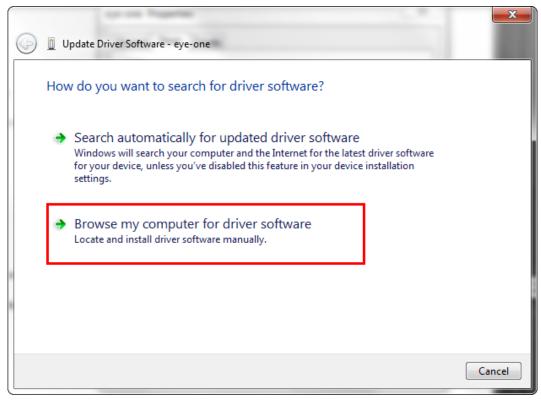


图 3.6. 选择在本地搜索驱动软件

Thousand Lights Lighting (Changzhou) Limited

3.2.2 THOUSLITE FS 光谱照度计

- 打开 *Prerequisites\Drivers\FS Spectrometer Driver* 文件夹,根据您的电脑是 32 位或 64 位选择 DPInst.exe 或 DPInst64.exe 进行安装,见图 3.7。
- 按提示安装直至安装成功。

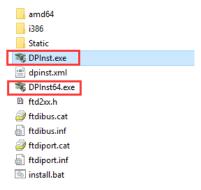
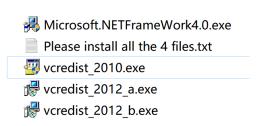



图 3.7.选择 DPInst.exe 或 DPInst64.exe 安装

3.3 软件使用环境文件安装

LEDNavigator 软件运行要求您的电脑具备.NetFrameWork 及 VC 运行库,若软件第一次使用 无法正常运行,开启时会提示缺少相应的 Dll 文件,如**无法 load DLL 'SDCM.dll'**,则请尝 试安装 THOUSLITE 提供的 *Prerequisites\Environment* 文件夹下的四个环境文件,系统提示 安装不成功或者已经安装的环境文件可以忽略。

- Microsoft.NETFrameWork4.0.exe <- 基本上 win7 和 win10 的电脑均已安装此文件
- vcredist_2010.exe
- vcredist_2012_a.exe
- vcredist_2012_b.exe

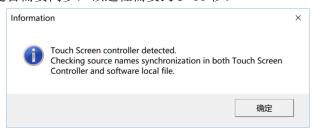
Thousand Lights Lighting (Changzhou) Limited

4. LEDNAVIGATOR 软件使用介绍

4.1 不同连接模式下的软件开机自检

在完成 2.5 节的硬件准备工作之后,即可开启软件 LEDNavigator,打开软件后,软件首先会进行自检,包括以下 3 个步骤,

▶ 检查是否连接软件狗,若无,则无法启动,显示如下图


- ▶ 检查是否连接 LEDCube/触屏控制器/无线发射器(这三种连接方式详见 2.4 节),并根据连接模式显示相应信息,详细解释请见 4.1.1~4.1.3 节;
- ▶ 检查是否连接任何测量设备。

4.1.1 PC 端通过触屏控制器连接 LEDCube

该连接模式下,如连接成功,则软件运行时首先提示找到 LEDScreen,

点击确定后,软件提示对触屏控制器内存储的光源名称进行检查,并与软件本地光源名文件进行比较,以确定是否需要同步,该过程需要约 5~10 秒。

如果用户一直使用触屏控制器连接 PC,则一般不需要进行同步,显示如下,

如果有时会切换至第二种连接模式 (PC 通过无线连接 LEDCube),且用户对 LEDCube 硬件内存储的光源和软件本地光源名文件进行修改 (详见 4.7 节中的 *Save to HW…及 Save to SW…*),将导致软件本地光源名文件和触屏控制器内的光源名称不一致。

Thousand Lights Lighting (Changzhou) Limited

此时软件提示信息如下:

选择是(Y),则以软件本地文件中的光源名为标准,覆盖触屏控制器内光源名。 选择否(N),则以触屏控制器中光源名为标准,覆盖软件本地文件光源名。

4.1.2 PC 端通过无线发射器连接 LEDCube

该连接模式下,软件将会自动搜寻当前网络分组中的所有 LEDCube, 若找到,则会提示如下。

4.1.3 PC 端直接 LEDCube

该连接模式下,只有当连接单台 LEDCube 时,软件才能够查找到 LEDCube;连接多台时则会显示无法找到 LEDCube, **但此时软件可正常控制 LEDCube**。

完成自检后,LEDNavigator 的界面显示如图 4.1,分为菜单栏(Menu)、图形显示区域(Graphics)、单通道控制区域(Single channel control)、数据库(Database)、配光区域(Match)、光源选择区域(Lighting)、测量区域(Measure)和动态照明(Dynamic lighting)。其中菜单栏及光源选择区域会随连接模式不同会略有不同。

Thousand Lights Lighting (Changzhou) Limited

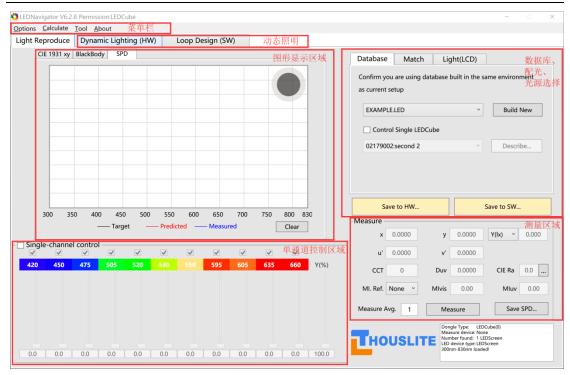


图 4.1.LEDNavigator 界面图

4.2 菜单栏

LEDNavigator 软件的菜单栏包含四项功能,介绍如下。

4.2.1 菜单/选项

光谱权重函数补偿设置(Spectral Weighting Function),如下图,

若用户使用**照度测量设备**,则该功能设为 Unload Spectral Weighting Function 即可。

当用户使用**亮度测量设备**通过白板间接测量光源参数时,需要根据白板的光谱反射比对测量结果进行补偿,以获得光源的数据。白板需要另行购买,见图 4.2,图 4.3 为白板的光谱权重函数曲线示例。光谱权重函数为反射比的倒数(1/Ref)。用户可点击 *Options/Spectral Weighting Function*…加载光谱权重函数文件,以对测量值进行修正。光谱权重函数文件在 *Data/WhiteTile* 中,软件显示的测量值为经白板的光谱权重函数校正后的数据。

Thousand Lights Lighting (Changzhou) Limited

图 4.2.标准白板

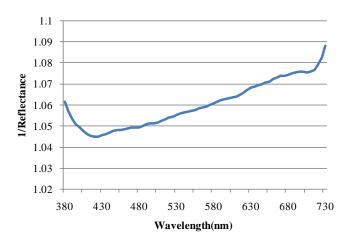
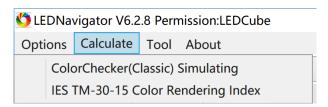



图 4.3. 白板光谱权重函数示例

4.2.2 菜单/计算

目前计算(Calculate)下有两个项目,分别介绍如下。

a) 色卡模拟 ColorChecker(Classic) Simulating

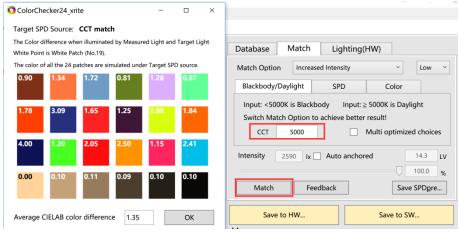


图 4.4.色卡模拟

Thousand Lights Lighting (Changzhou) Limited

该模式下,软件将模拟 24 色卡(X-Rite color checker/Classic)在测量光源下观察相对于在 目标光源下观察的 CIELAB 色差。每一个色块的色差都列于色块左上方。所有色块的 平均色差列于最下方。

b) CESCRI Rf/Rg

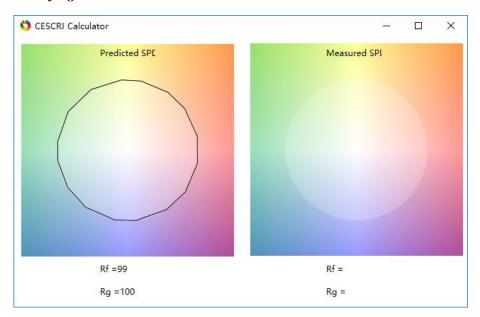
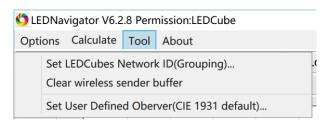
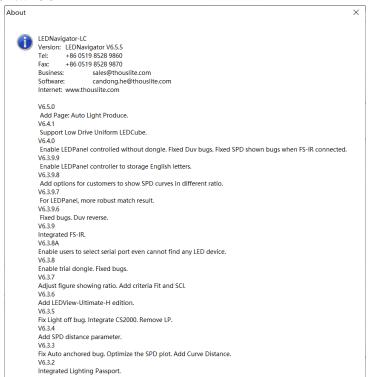



图 4.5. CES CRI 参数

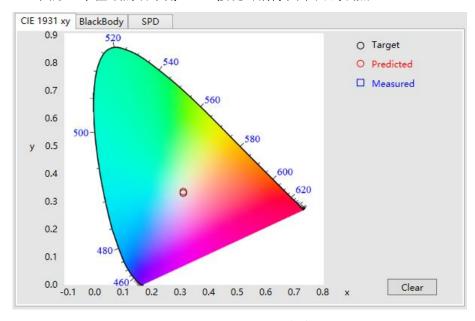
该选项用于计算光源的 TM-30-15 CESCRI 指数,包括真实度指数 Rf(Fidelity index) 和色域指数 Rg (Gamut index), 其计算及定义详见 https://energy.gov/sites/prod/files/2015/12/f27/tm-30_fact-sheet.pdf。该页面左右两侧分别 会显示理论预测光谱的 CESCRI 及实测光谱的 CESCRI。 圆形色域区域则显示了计算光 相对于参考光在相应点处的色偏移。

4.2.3 菜单/工具

该项目下包含3个功能,其中1、2仅处于无线连接模式才有效,介绍如下。

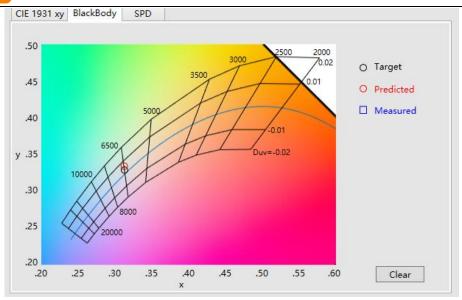

- ▶ LEDCube 无线分组,用户可在该项目下对多台 LEDCube 进行分组。详细使用方法请见 第五章"LEDCube 无线分组"。
- 清空无线发射器缓存,如果外界干扰较强,Zigbee 无线网络可能被阻塞,如果无法通过 无线发射器连接 LEDCube, 请使用该功能。
- ▶ 观察者设置选项,软件默认使用 CIE1931 观察者三刺激值函数,同时额外提供 CIE1964 观察者,以及一个典型的相机响应曲线作为可选观察者,观察者数据文件为 "Observer CMF 1964"及"Observer Camera.csv", 保存在 Data/system 文件夹下。用户 可参考这两个文件的格式自行修改,或采用新的观察者数据。

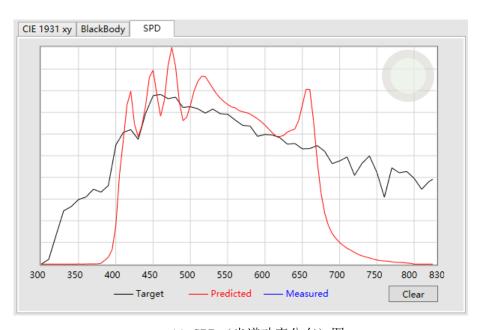
Thousand Lights Lighting (Changzhou) Limited


4.2.4 菜单/关于

该项目显示软件的版本信息。

4.3 图形显示区域


图形区域用于显示当前目标光源、预测光源以及实测光源。共有三种显示模式,分别为"CIE 1931 色度图","放大显示黑体辐射轨迹的 CIE 1931 色度图",以及"SPD 图",见图 4.6(a)、(b)、(c)。图形显示区域的右下角 Clear 按键可清除图中曲线或点。


(a).显示 CIE 1931 色度图

Thousand Lights Lighting (Changzhou) Limited

(b).放大显示黑体辐射轨迹

(c). SPD(光谱功率分布)图

图 4.6. 图形区域

4.4 单通道控制区域

单通道控制模块允许用户单独控制 LEDCube 中的各 LED 通道的驱动电流值,见图 4.7。用户可移动各通道滑动条,或直接输入数值以调节每个 LED 通道的驱动值,之后光谱图形和预测光源颜色将会实时更新。每个通道的可调范围为 0 至 100,分辨率为 0.1。

调整 *Y*(%)滑动条以 Y%的比例调节所有通道的电流驱动值,也可通过键盘上下方向键进行 微调。需注意,由于 LED 出光亮度和驱动电流值之间为非线性,因此在调节 *Y*(%)时,实际 光源光品质会有所变化。

若希望在保持光品质不变的前提下调节出光亮度,请见 4.7 节 (5) 关于亮度调节的介绍。

Thousand Lights Lighting (Changzhou) Limited

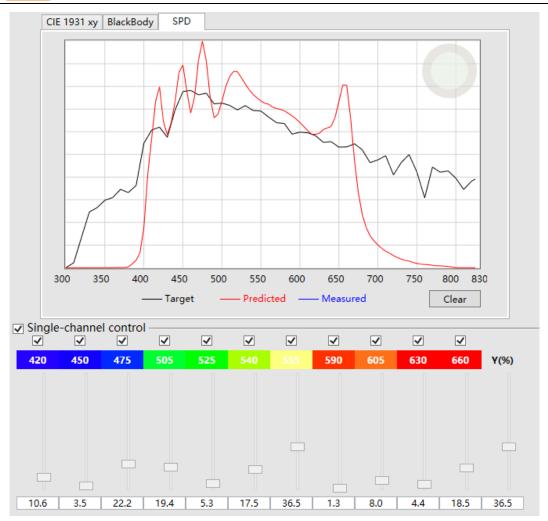


图 4.7. 单通道控制模块的界面

通过勾选或取消每个 LED 通道上方的选框,用户可指定哪些 LED 通道参与配光,哪些不参与。配光时,未勾选的通道将在配光后置零。

配光后,用户可手动调节所有通道的驱动值,包括未勾选通道。以图 4.8 为例,505nm、550nm及 635nm 三个通道不参与配光,此时配光后这些通道被置零,但用户可手动调节这些通道的值。

图 4.8. 单通道控制模块选框

Thousand Lights Lighting (Changzhou) Limited

4.5 测量区域及测量设置

软件默认支持的测量设备包括: X-Rite i1 Pro2、THOUSLITE FS、Konica Minolta CL500A,下面对不同测量设备分别说明校准和测量几何条件:

▶ 当连接 **X-Rite i1 Pro2** 时,软件打开后首次点击 *Measure* 会提示校准,请打开 i1 Pro2 的校准板滑盖露出校准白板,然后将 i1 Pro2 放置于校准白板上,点击提示框中的 OK 按钮即可校准,如图 4.9;

图 4.9. i1 Pro 2 校准操作

校准完毕后,请架好 i1Pro2,图 4.10 所示为 i1 Pro2 的支架附件,将支架插入设备下方的两个定位孔,即可固定 i1 Pro2;

图 4.10. i1 Pro2 的支架

随后 i1 Pro2 以 45°方向对准白板进行测量,如图 4.11;

Thousand Lights Lighting (Changzhou) Limited

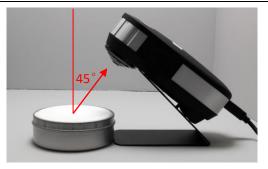


图 4.11. i1 Pro2 和校准白板的测量几何条件

最后校准白板和 i1 Pro2 放置于需要测量的工作平面上,如图 4.12 所示;需注意,在此测量几何条件下,需要导入校准白板光谱权重函数,详见 4.2.1 小节,且此时 i1 Pro2 测量得到的亮度信息为光亮度 cd/m^2 。

图 4.12. i1 Pro2 和校准白板工作平面测量示意图

如果购买了 i1 Pro2 照度测量配件,如图 4.13 所示,则在完成图 4.9 的校准之后,为 i1 Pro2 安装照度测量配件,如图 4.14 所示;最后将 i1 Pro2 放置于需要测量的工作平面上,如图 4.15 所示。**注意此设置无需导入 SWF 文件**,且此时 i1 Pro2 测量得到的数据为照度 lux。

Thousand Lights Lighting (Changzhou) Limited

图 4.13. i1 Pro2 的照度测量配件

图 4.14.安装照度测量配件后的 i1 Pro2

图 4.15. i1 Pro2 带照度头工作平面测量示意图

▶ 连接 **THOUSLITE FS** 光谱照度计时,软件打开后首次点击 *Measure* 会提示先进行暗场校准,此时请旋上测量头保护盖,见图 4.16,然后进行暗场校准;校准完成后,将光谱照度计放置于需要测量的工作平面上,与图 4.15 类似。

Thousand Lights Lighting (Changzhou) Limited

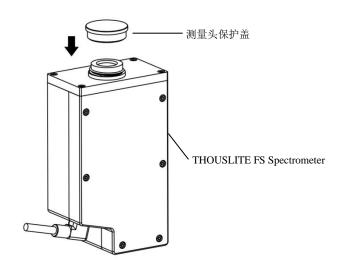


图 4.16. THOUSLITE FS 校准时需旋上保护盖

▶ 当连接 Konica Minolta CL500A 时,无需校准,将其直接放置于需要测量的工作平面上,与图 4.15 类似。

测量完成后,结果会显示于下图所示的区域中,同时,测得 SPD 光谱曲线及色品坐标将自动显示于图形显示区域。点击 CIE Ra 栏右侧的... (更多信息) 按钮可弹出 R1~R15 的详细数据,点击 Reference 栏右侧的下拉按钮,可选择计算同色异谱指数(MI)的参考照明体。若需要保存测量结果,可通过点击 Save SPD... 按键实现,默认存储文件目录在 Data/MeasuredSPD 内。保存的文件可用于下面光谱复现模块。

4.6 数据库区域

LED 数据库区域用于选择或新建与当前设备、当前测试条件相对应的数据库文件。数据库存储了 LEDCube 各通道的光谱、亮度特性,文件保存在 *Data/Database* 文件夹下,后缀名为 LED,该文件是实现所有配光功能的基础。

当 LED 设备,测量设备,使用条件发生变化时,客户需切换至相应数据库或自行重建数据库(如图 4.17)。重建数据库由 Build New 按钮开始,每个 LED 通道按照不同驱动值依次点亮并测量记录,整个过程需约 15 分~30 钟(根据测量仪器及设置不同有所变化),重建完成后用户可设置新数据库名称。请确认整个重建数据库过程在暗室中进行。完成后数据库文件保存在 Data/Database 内。

Thousand Lights Lighting (Changzhou) Limited

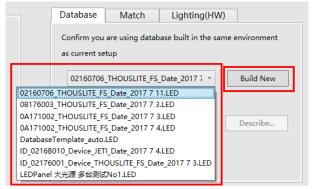


图 4.17. 勾选或重建数据库

如当前网络中含多个 LEDCube,用户也可对网络中指定的 LEDCube 进行控制,并为其指定 名称,如图 4.18 和 4.19。

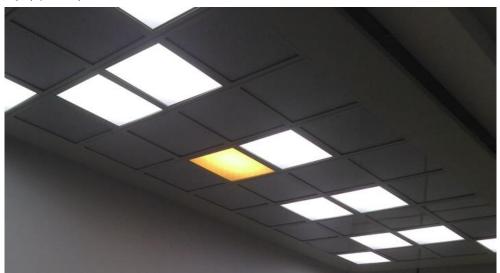
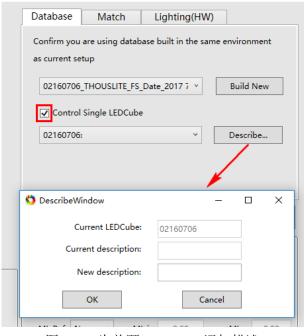
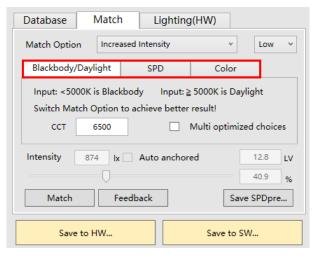
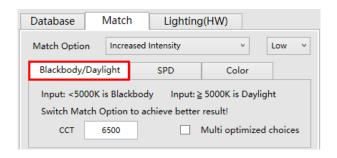


图 4.18. 单颗 LEDCube 控制

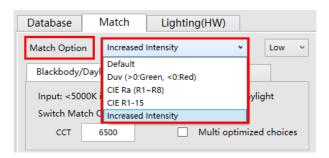



图 4.19. 为单颗 LEDCube 添加描述

Thousand Lights Lighting (Changzhou) Limited


4.7 配光区域

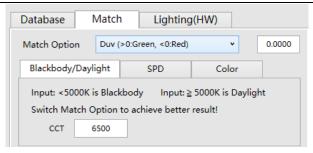
配光部分如下图,主要有 Blackbody/Daylight, SPD, Color 三种配光模式。



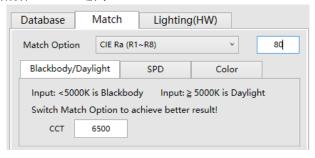
4.20 配光界面

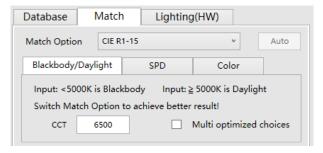
1) **当选择** *Blackbody/Daylight* 模式时,软件以黑体或 CIE 日光为目标进行配光。用户需要输入目标色温(2000K~20000K 之间),当输入色温小于 5000K 时,目标为黑体辐射光谱,当输入色温高于(包括)5000K 时,目标为 CIE 日光光谱,当输入色温为5000/5500/6500/7500 时,软件将识别为 CIE D50/D55/D65/D75 进行配光。

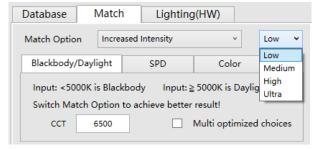
该种模式下,用户可选择有 5 种配光选项(Match Options),用户可以按照实际应用灵活选择,若没有特别倾向,推荐使用 *Increased Intensity-Low 或CIE R1-15* 选项。



- ✓ 当选择"*Default*"时,软件将对输出光谱形态、色温、x/y、CIE Ra 显色指数以一定的权重比例进行综合优化,以尽量接近黑体光谱或日光光谱。
- ✓ 当选择"Duv"时,用户可设置希望达到的偏色程度,软件将保持输出光色温不变。Duv 范围为-0.02 至+0.02,Duv 大于 0 表示偏绿,Duv 小于 0 表示偏红。

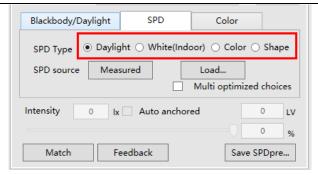



Thousand Lights Lighting (Changzhou) Limited

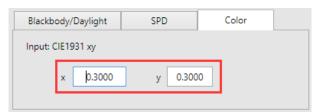

✓ 当选择"CIE Ra"时,则用户可设置输出光的显色指数,同时保证色温不变。输入显色指数在 0~100 之间。

✓ 当选择"CIE R1-15"时,软件将优化输出光的 CIE R1~R15 指数,使其各指数都 尽量接近 100,同时保证色温和光谱形态尽量与目标光谱接近。该选项有助于 提高输出光的 R9~R15 参数。

✓ 当选择"Increased Intensity"时,软件将优化输出光的 CIE R1~R15 指数,同时保证色温和光谱形态尽量与目标光谱接近,并同时尽量提高出光强度。该选项下有 4 种光强提升强度供选择,光强度的提升将以牺牲部分光品质为代价。



2) 当选择 SPD 模式时,软件以 SPD 数据为目标进行配光。用户需要选择目标 SPD 种类 SPD Type,共四种,介绍如下


Thousand Lights Lighting (Changzhou) Limited

- ✓ 当选择为"Daylight"时,则认为目标光源为室外日光,软件将输出光谱形态、 色温、x/y、CIE Ra 显色指数以一定的权重比例进行综合优化。相对于 "White(Indoor)"选项,算法对色温和 CIE Ra 显色指数的权重更大。
- ✓ 当选择为"White(Indoor)"时,则认为目标光源为室内白光,软件将输出光谱形态、色温、x/y、CIE Ra 显色指数以一定的权重比例进行综合优化.
- ✓ 当选择为 *Color* 时,软件认为目标光源为有色光,无色温、显色指数等参数, 软件仅考虑光谱形态和色度参数 x/y。
- ✓ 当选择为 Shape 时,软件将仅考虑光谱形态最接近。

设置完 SPD Type 后,点击 Measure 或 Load...按钮导入目标 SPD, 点击 Measure 则实时测量获得目标 SPD, 点击 Load...则导入历史数据作为目标 SPD, 历史 SPD 数据文件可通过测量后操作 Save SPD 获得,详见 4.5 节。SPD 数据文件保存在 Data/MeasuredSPD 文件夹内。

3) **当选择** *Color* 模式时,用户直接输入目标光源的 CIE1931 色度坐标,软件仅考虑其色度 参数 x/y,以对输出光进行优化获得最佳输出。

4) 多优化结果选项

在点击 *Match* 进行配光之前,用户可选择勾选"Multi optimized choices",若勾选,软件将输出 8 个候选的结果供选择,用户可以按照自己要求选择其中一个结果,如图 4.21 所示。该选项适用于 *Blackbody/Daylight*, *SPD* 两种配光模式。

Thousand Lights Lighting (Changzhou) Limited

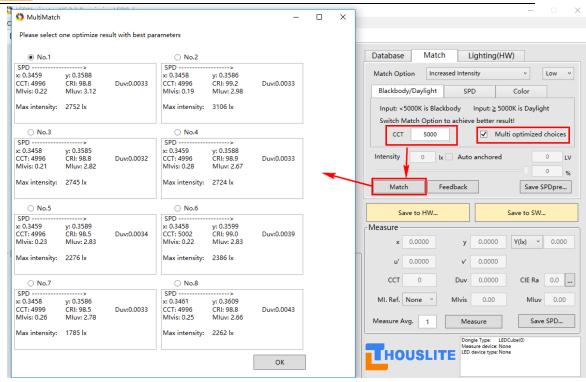
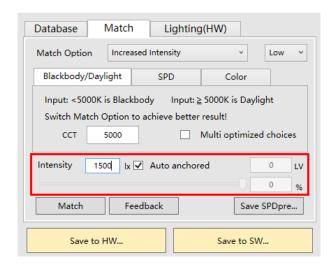
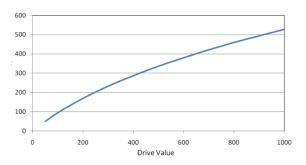



图 4.21 多配光结果选择

5) 亮度调节

见下图,在点击 *Match* 进行配光之后,用户可通过该滑动条调节亮度,最小分辨率为 0.1%,调节范围为 0%~100%。点击键盘左右方向键,可以 0.1%的分辨率微调。软件同时会给出当前百分比下的理论亮度值以及 LV 测光值。


请注意,调节本模块中的亮度滑动条与4.4节中的Y(%)滑动条不同,区别如下:

➤ 4.4 节单通道区域中,Y(%)以 Y%的比例直接调节各 LED 通道电流驱动值,而 LED 亮度和电流驱动值之间是非线性的。下图为典型的 LED 电流驱动值与亮度关系,横坐标是驱动值,纵坐标是 LED 亮度。由图可知实际亮度和 Y(%)的值并非线性关系。

Thousand Lights Lighting (Changzhou) Limited

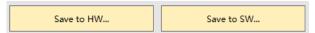
▶ 调节本模块的亮度滑动条,则软件会以该滑动条比例对亮度进行调节,以计算相应 亮度比例下的各 LED 通道驱动电流值。因此实际出光亮度与滑动条比例的线性关 系较佳。

特别注意: 当用户调节亮度至 5%以下时,因为 LED 通道在低驱动值下的不一致性较大且低亮度下每一 LED 通道的可调空间较小,可能会导致多台 LEDCube 出光效果差异较大。以下图为例,通过软件同时设置两台 LEDCube 的色温为 5000K,亮度调节为 1%,显然两颗 LEDCube 的差异较大。实际使用中,建议客户避免使用低于 5%以下的亮度,或者使用单通道控制中的白光 LED 通道实现低照度照明,如 1-2lux。

另,软件还提供设定目标光源强度的功能,通过勾选"Auto anchored"选框就可以实现该功能(**前提是已连接测量设备**),软件将不断调整出光强度以匹配目标参数直到误差小于 1%。该功能也适用于 Feedback,即用户点击 Feedback 后,软件在 Feedabck 的同时,也会调整最终出光强度,以匹配目标参数直到误差小于 1%。

6) Match 及 Feedback 按钮

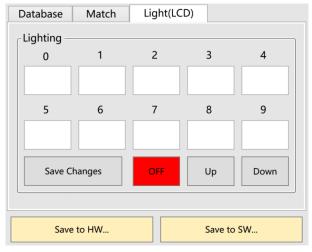
设定好目标光源之后,点击 *Match* 按钮即可进行配光,软件将计算出理论预测值。此时可以点击 *Measure* 按键获得实测值,如果测量值和理论预测值差异较大(例如色温差异100K 以上),可通过 *Feedback* 进一步改进配光精度。*Feedback* 前后,亮度百分比维持不变,但亮度绝对值会略微变化。如果勾选了 *Auto anchored* 选框,则 Feedback 过程将



Thousand Lights Lighting (Changzhou) Limited

保持输出亮度不变。一般情况下,点击 1-2 次 Feedback 即可达到目标精度,若超过 3 次点击 Feedback 仍未达到目标精度,则建议重建数据库。另,点击 Feedback 按键前,务必先点击 Measure 按键以获取实测值和理论预测值之间的差异。

7) Save to HW...及 Save to SW...


Save to HW...表示把当前光源保存至 LEDCube 硬件内存中,即使断电也不会丢失。Save to SW...表示把当前光源保存到软件本地文件中,见 4.10 节。此功能方便客户未来直接调用预存光源或者设计动态照明。

4.8 光源区域

LEDCube 硬件可存储多至 80 个光源配方,用户可通过本页面选择任一种点亮。而根据 PC 端连接 LEDCube 的模式不同,本页面会自动进行调整,介绍如下。

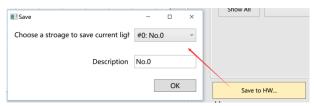
4.8.1 PC 端通过触屏控制器连接 LEDCube

在该模式下,软件的光源区域界面如下图:

该界面与 LCD 触屏控制器上的 Sources 页面对应,共包含 8 个页面,每个页面包含 10 种光源按钮,详见 2.3.1 节触屏控制器的介绍。点击 Up 或 Down 按钮可对其进行翻页,每页包含 10 个按钮。点击每个按钮的序号即可点亮该光源。每个按钮的名称可直接在界面上进行修改,然后通过点击 Save Changes 保存到触屏控制器上。注意此时仅对光源名称进行修改保存,实际的光源并未改变,若需更改光源,则需要点击 Save to HW...,然后选择光源序号进行修改,详见 4.7 节末段。

4.8.2 PC 端通过无线发射器连接 LEDCube

在该连接模式下,软件界面如下图。


Thousand Lights Lighting (Changzhou) Limited

该页面显示 8 个快捷按钮,对应 0 号至 7 号光源序号,其余光源可通过本模块的下拉按钮进行选择,或通过 *Show All* 的光源选择界面进行快速选择,按钮名称即为用户保存的光源名称,按钮背景色则为模拟的光源色,如下图所示。

如需保存新光源至某个光源序号中,用户可点击 *Save to HW*...进行保存,并同时输入新的光源名称。该情况下各光源名信息保存在软件本地文件 Data/ModeDetails*.log 中。

4.8.3 PC 端直连 LEDCube

该情况下的光源区域与 4.8.2 相同。

Thousand Lights Lighting (Changzhou) Limited

4.9 动态照明 (硬件) 模块

图 4.22 所示为动态照明(硬件)模块 Dynamic Lighting(HW),该模块可存储 4 个光循环 Loop,点击相应 Loop 后,用户可自行设置每个光循环,每个 Loop 内最多可添加 24 种的 LEDCube 硬件中存储的光源,最小切换间隔为 1 秒。光源为 LEDCube 硬件内 80 个存储的 光源中任一个,如果光源时间设为 0,则该光源将被跳过。点击 Start 按钮和 Stop 按钮可以 开始或停止循环,另外,用户可以点击 Save to loop 保存修改至相应的循环序号中,如图 4.23。

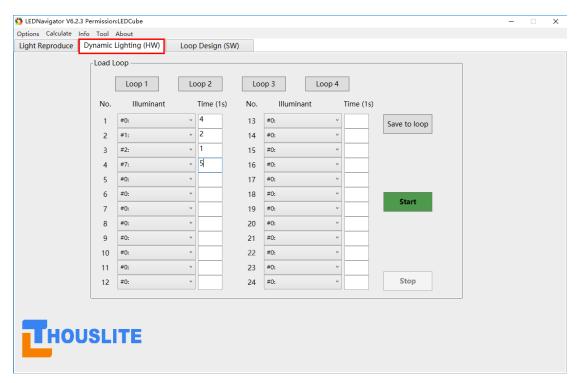


图 4.22. 动态照明功能模块界面

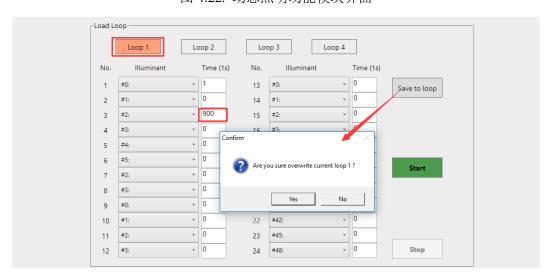


图 4.23. 保存修改至当前的循环

特别的,当 PC 端通过触屏控制器连接 LEDCube 时,该页面下方的保存至 LCD 触屏控制器选项将能够启用。该功能和触屏控制器中的 Sequence 页面对应,详见 2.3.1 节触屏控制器介

Thousand Lights Lighting (Changzhou) Limited

绍。点击 Save 按钮,即可将当前光循环保存到触屏控制器中的 1 号至 5 号 Loop 中的一个,如图 4.24 所示。

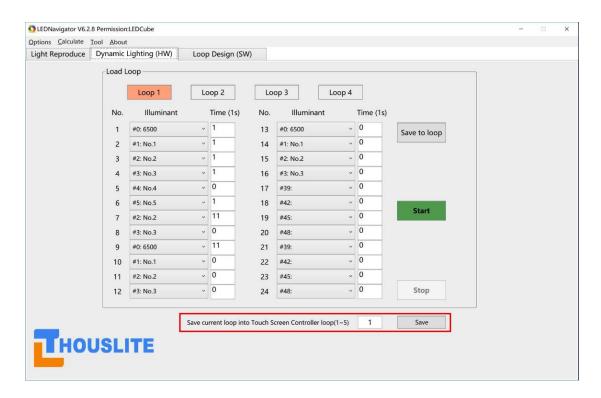


图 4.24 将当前光循环保存至触屏控制器中

4.10 动态照明 (软件) 模块

4.7 节中提到的 Save to SW...保存的光源,将会显示在该界面,双击某一个光源即可点亮该光源,请务必点击 Save 或 Save As...按钮保存当前工作光源至 Loop file 中,否则所有光源将随着软件的关闭而删除。点击 Load...按钮可打开历史 Loop file,见图 4.25。点击 Clear可清空当前载入的 Loop file。

Thousand Lights Lighting (Changzhou) Limited

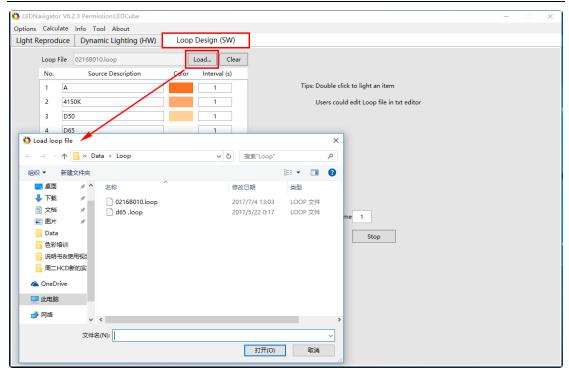


图 4.25 载入历史 Loop File 文件

载入 Loop 后,用户可在 *SourceDescription* 栏直接更改各光源名称以及点亮时间 *Interval*,选定某个光源后,点击右侧的上下方向按钮,可改变该光源在 Loop 中的位置。点击 *Delete* 则可删除该光源,见图 4.26。

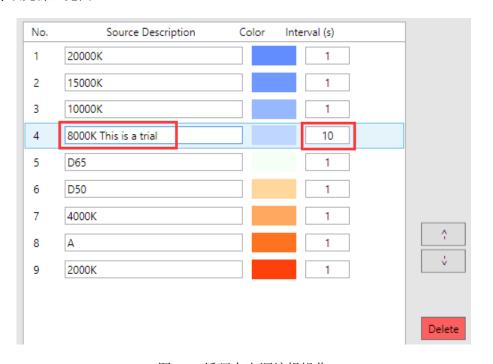
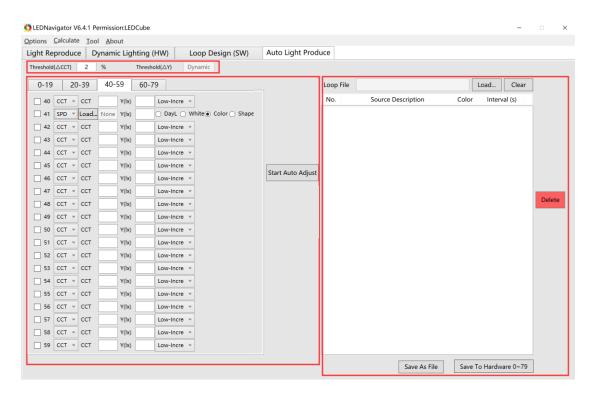


图 4.26 循环中光源编辑操作

注意所有变更只有在点击 Save 按钮后才会保存至当前 *Loop file* 文件中。点击 *Save As*...可将 当前工作 Loop 保存至新的 Loop file。

Thousand Lights Lighting (Changzhou) Limited


Save	Save As
------	---------

设置 Loop Repeat Times 可设定整个光循环的循环次数。点击 Start Loop 开始整个循环,点击 Stop 停止。

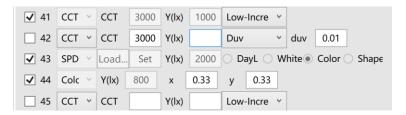
Loop Repeat Times	1
Start Loop	Stop

4.11 自动配光模块

本模块用于批量化生产光源,用户可一次性最多输入80个目标光源,生成过程是自动化的。 本模块界面如下,

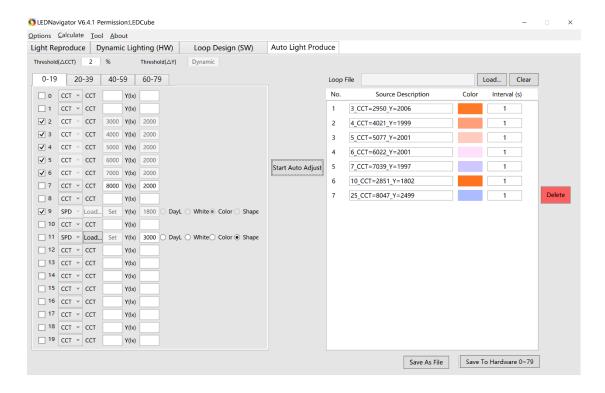
左上方的红色区域 Threshold(\triangle CCT)和 Threshold(\triangle Y)控制生成的阈值误差。对于每个目标光,当实测 CCT/Y 和目标 CCT/Y 的偏差在阈值以下时,配光将结束;当偏差超过阈值时,软件最多进行 5 次 Feedback 尝试,之后本次配光结束。

左侧红色区域为光源参数设置区域。本区域分为 4 个 Tab 页面,每个页面可设置 20 个目标光源,每个目标光源有其对应编号 (0~79)。对于每个目标光源,用户有 3 种模式进行设置,与 4.7 节配光区域相同,即分为: 指定 CCT (即 4.7 节 *Blackbody/Daylight* 模式),指定 SPD (即 4.7 节 *SPD* 模式),指定 Color (即 4.7 节 Color 模式)。


右侧红色区域为结果显示区域。当用户点击"Start Auto Adjust"按钮后,软件将持续运行到所有目标光源生成为止。生成的光将被存储在该区域中。用户可进一步决定将这些光源存储到文件(Save As File)中,或是硬件中(Save To Hardware)。

Thousand Lights Lighting (Changzhou) Limited

4.11.1 目标光参数设置



以上图为例,用户对 41 号~44 号目标光源进行了设置,41 号中,设置目标光源色温 3000K,照度 1000lx,配光选项为 Increased Intensity-Low;42 号中,用户设置色温 3000K,duv 为 0.01;43 号中,用户载入了目标光谱,并设置照度 2000lx,光谱类型为"Color";44 号中,用户设置 x 为 0.33,y 为 0.33,照度 800lx。

当完成合法的参数设置后,用户需勾选序号前方的选框以进行确认。只有勾选确认后的目标 光源才会参与自动配光。

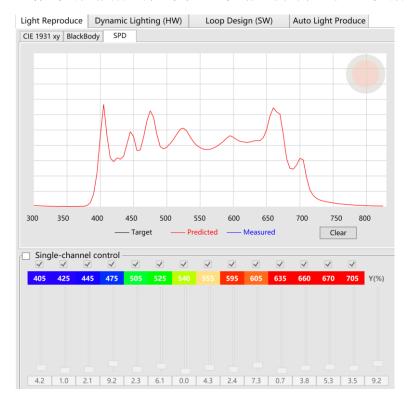
4.11.2 自动生成光源

当完成所有光源设置后,即可点击 "Start Auto Adjust"按钮进行批量配光。根据勾选确认的目标光源数量不同,或光谱仪测量耗时不同,平均每个光源的配光过程耗时在 20 秒至 2 分钟不等。待自动生成过程结束后,结果如下图:

最终软件将配光结果显示在界面右侧。请注意,对于 7 号和 11 号光源,由于未进行勾选确认,所以软件并未对其进行配光。

Thousand Lights Lighting (Changzhou) Limited

4.11.3 生成光源的结果说明


以下图中 No.2 光源为例说明光源名称的意义,名称为"4_CCT=4021_Y=1999": "_"为分隔符;"4"代表光源的序号为 4,这个序号决定了如果进行"Save To Hardware 0~79"操作时,该光源将被保存到硬件的 4号按钮中,即触控屏的 4号按钮;"CCT=4021"代表实测色温为4021K;"Y=1999"代表实测照度为1999Ix。请核对这两个参数以判断配光效果。请注意,第一个分隔符"_"之前的序号,如 3、4、5、6、7、10、25,即代表该光源将要存储到的按钮序号,所以请千万不要随意修改!

No.	Source Description	Color	Interval (s)
1	3_CCT=2950_Y=2006		1
2	4_CCT=4021_Y=1999		1
3	5_CCT=5077_Y=2001		1
4	6_CCT=6022_Y=2001		1
5	7_CCT=7039_Y=1997		1
6	10_CCT=2851_Y=1802		1
7	25_CCT=8047_Y=2499		1

用户可在自动生成的 Description 基础上修改名称,但请勿修改光源序号部分,如"3_","4_", "7_", 否则将导致软件无法识别光源的序号,进而无法通过点击"Save To Hardware 0~79"按钮保存至硬件中。

在本例中, No.3 即序号为 5 的光源,用户设置的目标色温为 5000K,实测色温 5077K,偏差为 77K,在某些应用场合该偏差无法接受,此时请调节 Threshold,如缩小至 1%。

双击每个光源的色块区域,即可点亮该光源。此时如果切换至软件的第一个页面"Light Reproduce"可查看该光源的具体配方,以及理论光谱。下图为双击 No.3 光源后的效果。

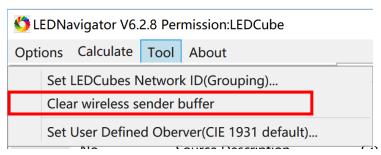
Thousand Lights Lighting (Changzhou) Limited

4.11.4 保存结果光源

Save As File Save To Hardware 0~79

点击 "Save As File" 按钮,用户可将当前配光结果保存至文件中,方便未来调用,或随时查看。点击 "Save To Hardware 0~79" 按钮,可将光源保存到硬件按钮中。如果保存至硬件按钮中,则请注意:软件仅会覆盖和光源序号一致的按钮。以下图的配光结果为例,用户只设置了 3、4、5、6、7、10、25 号这 7 个光源,所以当点击后,软件将覆盖触控屏中的 3、4、5、6、7、10、25 号按钮为新的光源。

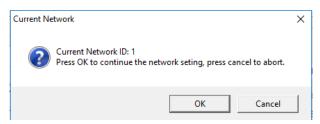
1	3_CCT=2950_Y=2006	1
2	4_CCT=4021_Y=1999	1
3	5_CCT=5077_Y=2001	1
4	6_CCT=6022_Y=2001	1
5	7_CCT=7039_Y=1997	1
6	10_CCT=2851_Y=1802	1
7	25_CCT=8047_Y=2499	1



Thousand Lights Lighting (Changzhou) Limited

5. LEDCube 无线网络分组

5.1 分组简介


如果用户购买了多个 LEDCube 硬件,使用无线发射器进行控制,并希望在同一现场将所有 LEDCube 硬件分成几组同时使用,且不相互干扰,则需要使用该功能对 LEDCube 网络进行 设置。例如,如果您有 10 台 LEDCube,希望分成 4+6 两组同时控制,那么您可以使用该功能将 4 台 LEDCube 的网络编号设为 2 号,另外 6 台 LEDCube 设为 3 号,同时您需要两个无线发射器,并分别设置其分组为 2 号和 3 号。

分组原则

- 1) 所有 LEDCube 及无线发射器,出厂默认网络编号为 1号;
- 2) 每一台 LEDCube 和每一个无线发射器都有网络编号属性;
- 3) 用户可随时更改 LEDCube 和无线发射器的网络编号属性;
- 4) 只有和 LEDCube 同一网络编号的无线发射器才能和该 LEDCube 通讯;
- 5) 可用的网络编号为 1~9 共 9 个, 即最多只能将 LEDCube 分为 9 组;
- 6) 仅 2017 年 3 月后出厂的 LEDCube 及无线发射器支持网络分组功能。

5.2 分组操作

点击该项目后,可看到当前活动的网络编号,点击 OK 对网络进行设置,点击 Cancel 退出。

点击 OK 后, 进入网络分组设置, 界面如图 5.1。

Thousand Lights Lighting (Changzhou) Limited

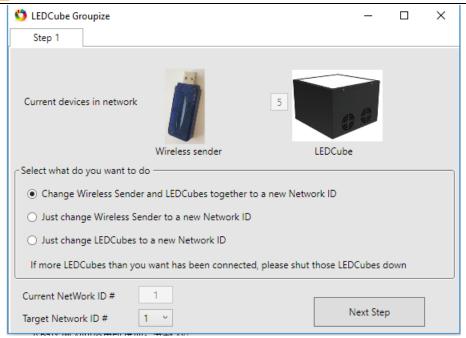


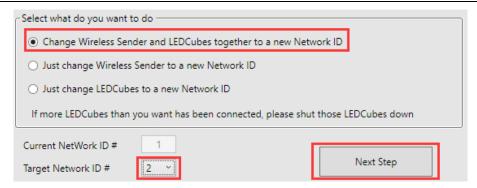
图 5.1. 网络分组界面

下图区域为当前网络硬件信息,图中表示当前网络包含一个无线发射器,及5台LEDCube。

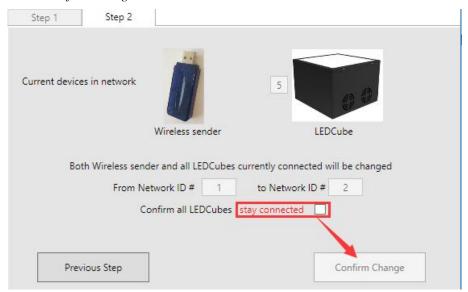
下图区域为网络更改选项,分别为

- 对无线发射器和 LEDCube 同时分组
- 仅对无线发射器分组
- 仅对 LEDCube 分组

下图区域显示了当前网络编号及更改后的目标网络编号。


5.2.1 对 LEDCube 和无线发射器同时分组

选择相应的网络更改选项后,设定目标网络编号,然后点击下一步 Next Step,见下图。



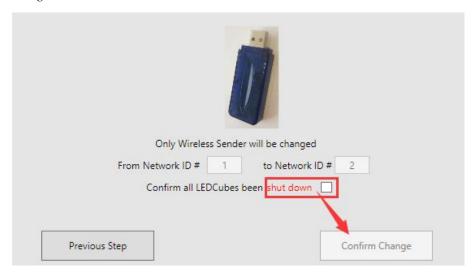
Thousand Lights Lighting (Changzhou) Limited

第二步见下图,根据提示,首先确认将设置为同一组的所有 LEDCube 硬件保持连接,然后点击确认更改 ConfirmChange。

成功完成后出现如下提示,完成操作。

5.2.2 仅对无线发射器分组

选择相应的网络更改选项后,设定目标网络编号,然后点击下一步 Next Step,见下图。



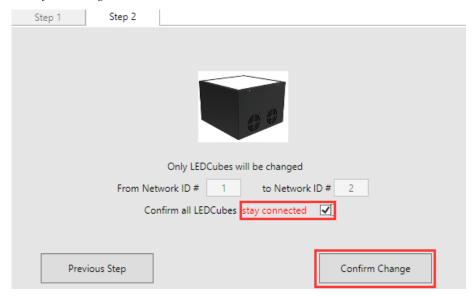
Thousand Lights Lighting (Changzhou) Limited

Select what do you want to do				
Change Wireless Sender and LEDCubes together to a new Network ID				
Just change Wireless Sender to a new Network ID				
Just change LEDCubes to a new Network ID				
If more LEDCubes than you want has been connected, please shut those LEDCubes down				
Current NetWork ID # 1				
Target Network ID # 2 ~	Next Step			

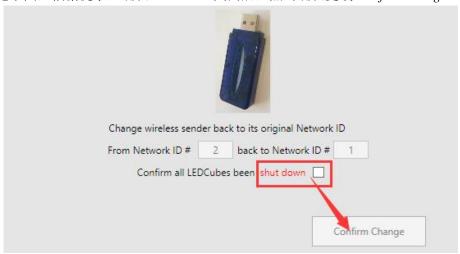
第二步见下图,根据提示,首先确认 LEDCube 关闭,切断电源,然后点击确认更改 ConfirmChange。

成功完成后出现如下提示,完成操作。

5.2.3 仅对 LEDCube 分组


选择相应的网络更改选项后,设定目标网络编号,然后点击下一步 Next Step,见下图。

Select what do you want to do				
Change Wireless Sender and LEDCubes together to a new Network ID				
Just change Wireless Sender to a new Network ID				
Just change LEDCubes to a new Network ID				
If more LEDCubes than you want has been connected, please shut those LEDCubes down				
Current NetWork ID # 1				
Target Network ID # 2 ~	Next Step			



第二步见下图,根据提示,首先确认将设置为同一组的 LEDCube 硬件保持连接,然后点击 确认更改 ConfirmChange。

第三步见下图,根据提示,确认 LEDCube 关闭后,点击确认更改 ConfirmChange。

成功完成后出现如下提示,完成操作。

Thousand Lights Lighting (Changzhou) Limited

6 配光实例

6.1 基于 Auto anchored 配光

设计目标为 CIE D65、照度为 1000lux, 举例说明基于 Auto anchored 进行配光:

- 1) 选择需要参与配光的 LED 通道;
- 2) 选择 Match Option, 选择 Increased Intensity Low;
- 3) 设置 CCT 为 6500K,
- 4) 勾选 Multi optimized choices (此选项也可不勾选)
- 5) 勾选 Auto anchored,设置目标照度为 1000
- 6) 点击 *Match*,软件会给出 8 个候选配方,选择 1 号配方,因为 1 号配光的预测色温 6496K、显色指数 99.1、同色异谱指数 0.16、最大照度 3778lx 均较佳,见图 6.2;
- 7) 点击 *Measure*,测量结果见图 6.3,色温为 6118K,显色指数 97.8,与状态栏中的预测值差异较大;
- **8)** 点击 *Feedback* 后,详见图 6.4,实测色温为 6502K、显色指数 98.9、同色异谱指数 0.18、照度 1001lx;满足要求;
- **9)** 将该结果通过 Save to HW...或 Save to SW...保存至软件或硬件中,详见图 6.5。

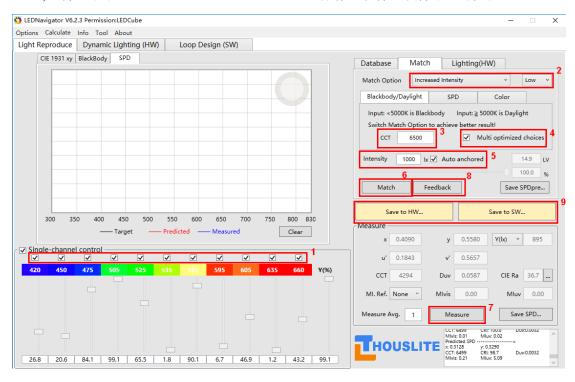


图 6.1. 基于 Auto anchored 配光

Thousand Lights Lighting (Changzhou) Limited

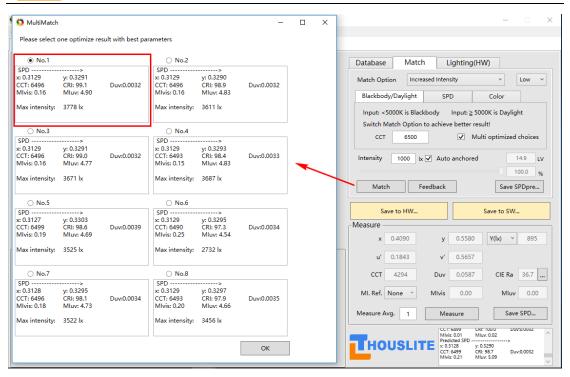
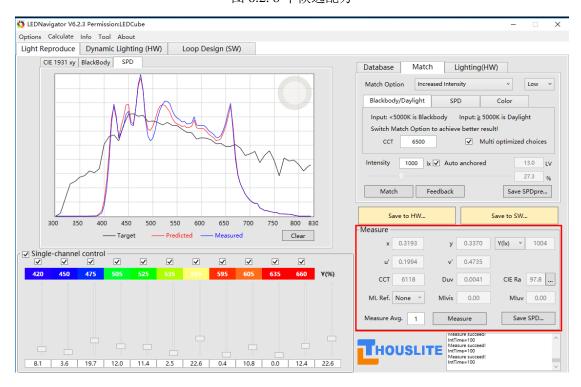



图 6.2.8 个候选配方

Thousand Lights Lighting (Changzhou) Limited

图 6.3. 第一次测量结果

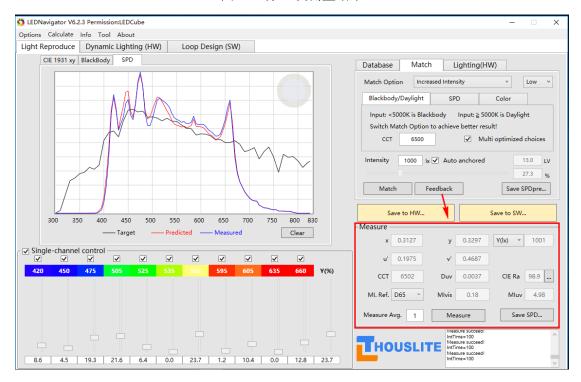


图 6.4. 第一次 Feedback 后实测结果

Thousand Lights Lighting (Changzhou) Limited

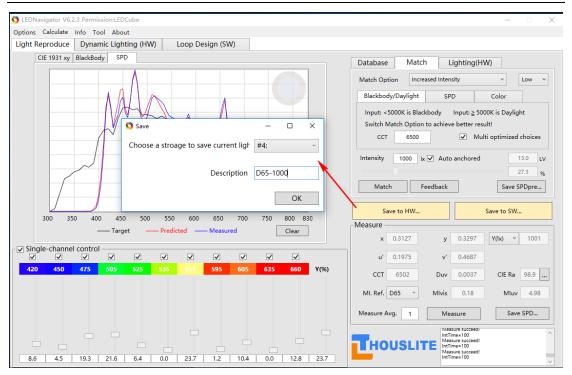


图 6.5. 保存设计的光源

6.2 基于手动调节照度配光

设计目标为 CIE D65、照度为 1000lux,举例说明基于手动调节照度进行配光,步骤详见图 6.6:

- 1) 选择需要参与配光的 LED 通道;
- 2) 选择 Match Option, 选择 Increased Intensity Low;
- 3) 设置 CCT 为 6500K,
- 4) 勾选 Multi optimized choices (此选项也可不勾选)
- 5) 点击 *Match*,软件会给出 8 个候选配方,选择 1 号配方,因为 1 号配光的预测色温 6496K、显色指数 99.1、同色异谱指数 0.16、最大照度 3778lx 均较佳,见图 6.2;
- **6)** 点击 *Measure*,测量结果见图 6.6,色温为 6613K,显色指数 98.6,照度 3706lx;调节亮度 bar 将预测照度调节至 986lx,并点击 *Measure* 测得色温为 6115K,显色指数 97.8,照度为 958lx,见图 6.7;
- 7) 点击 Feedback 后,详见图 6.8,实测色温为 6415K、显色指数 99.1、照度 707lx;再次调节预测亮度至 1002lx,实测色温为 6481K、显色指数 98.7、照度 979lx,见图 6.9;第三次调节预测亮度至 1027,实测色温为 6502K、显色指数 98.7、同色异谱指数 0.19、照度为 1000lx,满足要求;若第三次调节亮度后色温偏差较大,则可再次使用 Feedback,并多次调节亮度直至达到目标参数;
- 8) 将该结果通过 Save to HW...或 Save to SW...保存至软件或硬件中。

Thousand Lights Lighting (Changzhou) Limited

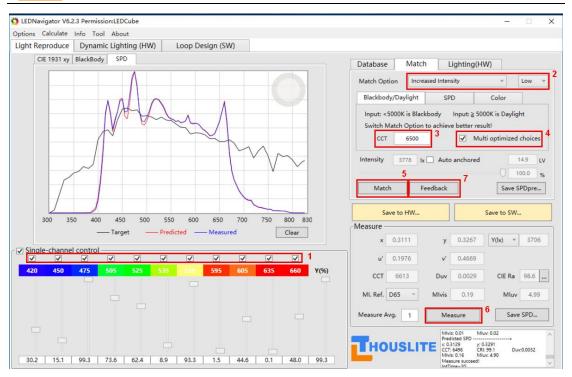


图 6.6. 基于手动调节亮度配光

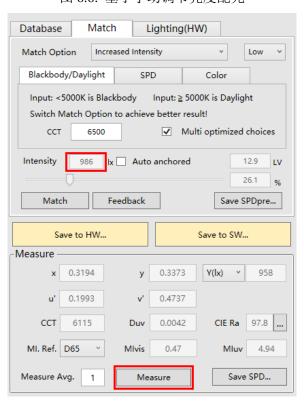


图 6.7. 第一次调节亮度后的实测结果

Thousand Lights Lighting (Changzhou) Limited

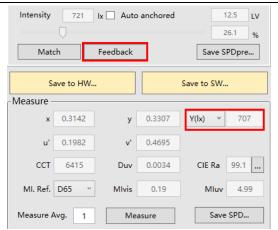


图 6.8. 第一次 Feedback 后的实测结果

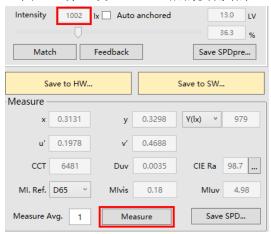


图 6.9. 第二次调节亮度后的实测结果



图 6.10. 第三次调节亮度后的实测结果

6.3 基于 SPD 的配光

以 Load SPD 文件为例,说明基于 SPD 的方法进行配光,步骤详见图 6.11:

- 1) 选择需要参与配光的 LED 通道;
- 2) 设置 SPD Type, 各个选项的说明见 4.7 节;
- 3) 选择 Load SPD 文件,也可选择直接测量目标光源;

Thousand Lights Lighting (Changzhou) Limited

- 4) 勾选或不勾选 Multi optimized choices;
- 5) 勾选或不勾选 Auto anchored;
- 6) 点击 Match

剩余步骤可以参见 6.1 或 6.2 小节

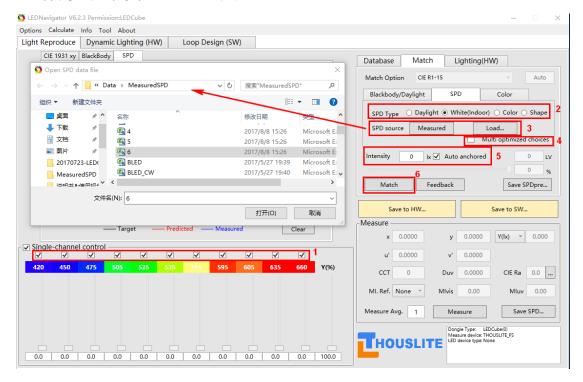


图 6.11. 基于 SPD 的配光

Thousand Lights Lighting (Changzhou) Limited

7 软件更新

未来软件 LEDNavigator 有更新,THOUSLITE 将会提供新版本的软件给客户,下面以 LEDNavigator V6.1.2 和 V6.2.4 为例说明如何进行软件更新。

当客户收到 THOUSLITE 提供的新版本 V6.2.4 的软件时,将原先版本 V6.1.2 中的 *Data* 文件夹中所有的文件拷贝并替换新版本 V6.2.4 中的 *Data* 文件夹,这样所有原先的 Database,光源名等均与原先保持一致。

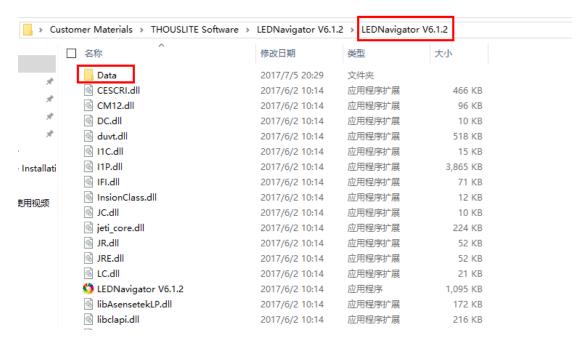


图 7.1 LEDNavigator V6.1.2 文件夹

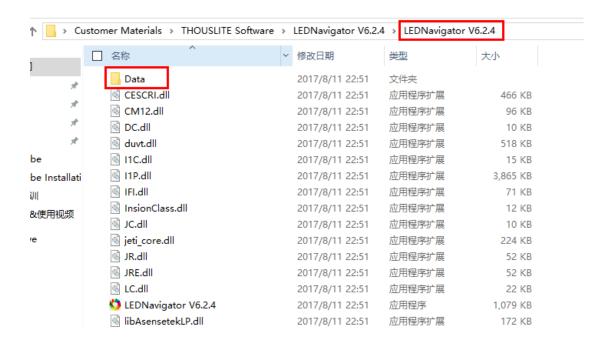


图 7.2 LEDNavigator V6.2.4 文件夹

